1. Let M be a non-zero submodule of V which is not equal to V. Let $v \in M$ be a nonzero vector and let $w \in V$ be a vector outside M. We claim that there is some $X \in M_{n}(\mathbb{C})$ such that $X v=w$, so $w \in M$ which is a contradiction. To prove the claim let T_{v}, T_{w} be two invertible matrices with first column equal to v and w repectively. Let $e_{1} \ldots, e_{n}$ denote the standard basis of V we have $T_{v}\left(e_{1}\right)=v$ and $T_{w}\left(e_{1}\right)=w$. Therefore $T_{w} T_{v}^{-1}(v)=w$ and we can take $X=T_{w} T_{v}^{-1}$.
2. Suppose that $g^{m}=1$. Then the minimal polynomial of g divides $x^{m}-1$ and so has distinct roots (because $x^{m}-1$ has no repeated roots). So g is diagonalizable by Part A linear algebra.
If char $K=p$ this is no longer true: Let $g \in G L(2, K)$ be the upper triangular matrix with entries equal to 1 except at the lower left corner which is 0 . Then $g^{p}=1$ but g is not diagonalizable.
Suppose that $n \leq p$ and the order of g is p^{2}. Let $a=g-1$, i.e. $g=1+a$. We have $1=g^{p^{2}}=(1+a)^{p^{2}}=1+a^{p^{2}}$ and hence $a^{p^{2}}=0$ i.e. a is nilpotent matrix. The minimal polynomial of a must divide x^{n} and hence $a^{n}=0$. Since $n \leq p$ we have $a^{p}=1$ but then $g^{p}=(1+a)^{p}=1+a^{p}=1$ so the order of g is p and not p^{2}, contradiction. So $n>p$.
3. Let V be the vector space over \mathbb{R} (or any chosen field) with basis $B:=$ $\left\{b_{g} \mid g \in G\right\}$ labelled by the elements of G. For any $g \in G$ define a linear transformation $T_{g}: V \rightarrow V$ by its action on the basis B as follows:

$$
T_{g}\left(v_{x}\right)=v_{g x} \quad \forall x \in G
$$

(So T_{g} acts on B as a permutation in the same way as g acts on G by left multiplication). It is immediate that $T_{g_{1} g_{2}}=T_{g_{1}} \circ T_{g_{2}}$ for all $g_{1}, g_{2} \in G$ and so $\left\{T_{g} \mid g \in G\right\}$ is a subgroup of $G L(n, \mathbb{C})$ isomorphic to G (with $n=|G|)$.
Lastly let us show that A_{5} is not isomorphic to a subgroup H of $G L(2, \mathbb{C})$. Suppose that $H \simeq A_{5}$ and consider an element $g \in H$ of order 2 . By Q2 g must be diagonalizable with eigenvalues ± 1. If the eigenvalues are equal then g is $\pm I d$ and must commute with all elements of $H \simeq A_{5}$ which is not the case. Therefore g has eigenvalues 1 and -1 and in particular $\operatorname{det}(g)=$ -1 . The determinant map restricted to H provides a homomorphism det : $H \rightarrow\left(\mathbb{C}^{*}, \times\right)$ with a non-trivial image. Recall now that $H \simeq A_{5}$ is a simple group. Therefore the above homomorhism is injective and so H is isomorhic to its image det $H \leq \mathbb{C}^{*}$. However the multiplicative group \mathbb{C}^{*} is abelian and A_{5} is not abelian, contradiction.

